practices such as identifying explosive compounds, narcotics, in situ the knowledge, skills and support to properly apply these tools investigation, but also promises to dramatically reduce the volume of technologies allow complex analyses to be conducted outside of forensic evidence becomes increasingly important. To provide field communities are called to meet challenges such as narco-terrorism, As the military, law enforcement and homeland security The groups that use forensic technology traverse many operational areas, but the requirements and the desired outcomes are the same: develop

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Mission Space

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Field Purposing Technologies: Placing Forensic Tools into the Hands of Field Practitioners for Timely Intelligence

Field Technology Requirements Process

Step 1: Identify Requirements

Step 2: Identify Potential Technologies

Step 3: Test and Evaluate Tools

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback

Abstract

As the military, law enforcement and homeland security communities face increased demands to provide timely intelligence, technologies are needed to enhance the ability of operators to detect, identify and respond to threats. Portable field technology allows the military to conduct complex analyses in the field. The Griffin™ 460 gas chromatography mass spectrometry (GC/MS) chemical analysis is used to analyze and identify formally relevant chemicals contained in the skin, including narcotics, spinal fluid and explosives. This device, unable other GC/MS devices typically found in the laboratory due to size and power needs, has been optimized and ruggedized for field use.

Step 4: Solicit End User Feedback

Step 5: Refine and Adapt Technology

Step 6: Develop Field-Training Materials

Step 7: Support and Reachback